PHYS4450 Solid State Physics Problem Set 1 Due: 1 February 2013 (Friday)
All problem sets should be handed in not later than 5pm on the due date. Drop your assignment in the Boz
labeled PHYS4450 in SC 213. Late submission within Due+2 days from the due date will receive a discounted

score.

Important: You MUST attached a SIGNED declaration on academic honesty to every problem
set. Homework without a signed declaration form will NOT be graded. A form is attached at
the end of the Problem Set.

Please work out the steps of the calculations in detail.

1.0

1.0

1.0”

1.1

Reading Assignment: Don’t need to hand in anything. Read Chapter 1 of Kittel and/or Chapter 2 of
Christman. Chapter 1 of the e-book of Quinn and Yi also covers the same materials (deeper in some
topics). Read also Kittel’s Chapter 3 (early sections) for a review on different types of bonding (see
Problem 1.1). The part on bonding will not be discussed in class, yet it is part of our course. Read
Kittel or Christman’s discussion on bonding in solids. You are assumed to know the basics of bonding,
e.g. ionic, covalent, metallic, and molecular (Van der Waals) bonding (see Quantum Physics II).

Read all the problems at the end of Kittel's Chapter 1. You should be able to do all that (don’t need
to hand them in), and the answers are scattered in our class notes. .

Action: (a) Go to the library (reserved books section) and browse the standard textbooks reserved
under PHYS4450. Get a feeling of the style of the books. There must be one that fits your taste.
(b) Click on the link in course page to browse the e-book Solid State Physics: Principles and Modern
Applications by JJ Quinn and KS Yi. The first 9 chapters are standard topics in a basic course like
ours. It is a good boak.

Self-study on Cohesive Energy I. This is related to the fundamental question of why atoms (or
molecules) come together to form a regular array (i.e., solids). You have learnt this in Quantum Physics
(on bonding). Let’s review and learn something new. (Your Quantum Physics textbook and Kittel’s
Ch.3 may be useful.) In Nature, when you see some basic entities coming together to form a stable
group, there must be a potential energy function upqs,(r) (which indicates the interaction between two
entities as a function of their separation r) of the form that the two entities experience an attractive
force when they are close to each other and a repulsive force when they are TOO close to each other.
The origin of these forces depends on the physical situation (e.g., the nucleons in a nucleus, atoms in
a molecule, ions in a ionic crystal, molecules in a molecular crystal, etc.), but the shape of upair(r) is
general.

In this problem, we consider molecular crystals or crystals in which the atoms are only weakly
interacting. In molecular crystals, i.e., a regular array of molecules, the bonding is typically weak and
a popular form of the pairwise interaction is
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where ¢ has the units of energy and ¢ carries the units of a length, Equation (1) is called the Lennard-
Jones potential or simply the “6-12 potential”. This is the interaction between gas molecules in a
jar of air. Usually, we simple IGNORE this interaction and treat a jar of air as an IDEAL GAS.
This assumption works OK for the air in our classroom. However, as temperature is lowered, it is
this interaction that leads to a phase transition, e.g., from gas to liquid and from liquid to solid, in
systems where the basic entities are charge neutral. This is the u(ry;) we had in mind when deriving
the van-der-Waals gas law in statistical mechanics. And molecular solids do exist.

(a) Without knowing the values of ¢ and o, sketch Eq.(1) and indicate ¢ and o in your sketch.

(b) Consider a molecular solid. We need not specify the lattice structure at the moment. Argue that
the energy (due to the pairwise interaction) in one mole is given by
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where ;5 is the separation between molecules ¢ and j in the solid and N4 is the Avogadro number.
Why is there a factor of 1/27 '

For any lattice, there is a nearest neighbor distance (from any point, one can find the nearest
neighbor(s) and then find the distance). Let 7o be the nearest neighboring distance, which as yet
is an UNKNOWN. In terms of o, each r;; can be written as r;; = a;;7o, where a;; isa NUMBER.
(That is to say, we can measure 7;; using ro.) Show that U in Eq.(2) can be rewritten as
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where Ag and Az are two numbers given by
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Note that up to now, we need NOT specify the lattice.

For a given lattice, Ag and A;2 can be evaluated (at least numerically). So let’s assume that they
are known. U becomes a function of o/rg. We look for the value of g such that U is a minimum,
i.e., what is the nearest neighboring separation ro in a molecular solid taking on the assumed
lattice? By minimizing U with respect to o/rg, show that the equilibrium nearest neighboring
separation is given by

924 1/6 :
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Hence, show that the cohesive energy per mole is given by
A2\
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and the cohesive energy per molecule in the solid is given by

e e (Qf;) . | (8)

The cohesive energy is a measure of how stable the solid is, as compared to the molecules being
far apart (where the interaction is negligible). A more negative cohesive energy implies a more
stable solid. Therefore, a solid that results from a stronger bonding mechanism will have a more
negative cohesive energy. Note that up to now, we need NOT specify the lattice.

To proceed, we specify the lattice. Let’s consider the case where the molecules sit on the points
forming a face-centered cubic lattice. Write down mathematical expressions for Ag and Aiq
(recall that they are numbers) by including the first FIVE TERMS (meaning: five “shells” of
neighbors of increasing distance) in the sums in Egs.(4) and (5). Sum the terms up and get the
n umerical values for Ag and Ajs. By comparing the results for retaining FEWER TERMS,
are the sums converging rapidly? The calculations here are referred to as “doing lattice sums”.
[OPTIONAL - no bonus: Write a small computer program to obtain Ag and Aiq to high
accuracy and also work out Ag and A for the body-centered cubic lattice.]

What you obtained for Ag and Ay is good for ALL face-centered cubic lattices (regardless of the
actual value of the lattice constant). Now, let’s apply the results to real solids with very weak
interaction. Xenon forms a face-centered cubic solid. Xenon atom has a closed shell structure.



Thus, the interaction between xenon atoms is very weak and the Lennard-Jones interaction is
applicable. (Note we are applying the results to a solid form by atoms.) If we know the values
of the parameters ¢ and o from experiments, then we can obtain an estimate for the nearest
neighboring separation ro from Eq.(6) and for the cohesive energy U or u from Eq.(7) or (8).
From experimental studies on Xenon gas (not from solids), it was found that o = 3.98 x 10710
m and € = 0.02 eV. ESTIMATE ry and u (cohesive energy per atom) for xenon. [For your
information, using X-ray diffraction, ro(expt) was found to be 4.33 x 10~19 m, and by measuring

the latent heat of vaporization, u(expt) was found to be —0.17 eV.]

(g) Don’t need to do anything. Read parts (a) to (f) again and understand the steps in the calculation
of cohesive energy of a solid, given a form of pairwise interaction. The steps are general and
applicable to other solids. Chapter 3 of Kittel discusses cohesive energy. In the next Problem Set,
you will play around with ionic crystals in a similar fashion.

1.2 (See Sample Question SQ1) Someone tells you tell he found a crystal with the following primitive
lattice vectors:

a; = (a/2)% + (a/2)¥,
a; = ay,

ag = (a/V?2)2.
where %, ¥, and % are unit vectors in the z, y, and z directions of a Cartesian coordinate system.

(a) Identify the Bravais lattice. [Drawing a picture may help.]
(b) Evaluate the volume of the primitive cell.

(c) Decide whether there is a conventional unit cell for this lattice. If yes, find the volume of the
conventional unit cell.

(d) The vectors a; and ap define a plane (two non-colinear vectors define a plane) and it also defines
a set (infinitely many of them) of crystal planes that are parallel. Find the separation between
adjacent planes. [Using the picture in (a) may help.]

(e) We discussed that the choice of primitive vectors for a lattice is NOT unique. Write down another
possible choice of the primitive lattice vectors and evaluate the volume of the primitive cell again
using your set of primitive vectors.

1.3 The face-centered cubic lattice is important for the reason that many semiconductors take on the fcc
lattice. Take the primitive lattice vectors for a fcc lattice to be a; = a(X + ), az = 1a(§ + %) and
ag = sa(k + 2). Express the following vectors as linear combinations of the primitive vectors: fit is
useful to make a sketch of the lattice and the vectors] (a) the position vectors for the eight cube corners
(thinking about the conventional cubic unit cell); (b) the position vectors for the six cube face centers;
(c) the positive vector of the point that is 3/4 on the line that goes from a lattice point (the origin)
diagonally across the cube to the opposite corner (we are not saying that there is a lattice point at this
location, we simply want to describe this location using primitive lattice vectors).

Finally, look up a picture for diamond (carbon crystal) and silicon. Describe the crystal structure by
(i) specifying the Bravais lattice and (ii) specifying the basis set of atoms decorating each lattice point
and where they sit relative to a lattice point.

1.4 (See Sample Question SQ2)

(a) Consider a two-dimensional (2D) square lattice as shown in the attached page. Five sets of
crystal planes (lines) are shown. Taking the separation between neighboring lattice points as a
(called the lattice constant). find the distance between adjacent planes for cases (b)-(e), using
elementary mathematics (e.g., trigonometry). [Remark: You can also regard the system
as three-dimensional by stacking up layers. See (b).]



(b) Consider a three-dimensional cubic lattice. The attached page (again) shows the lattice points
on the z-y plane and the three-dimensional system is formed by stacking up layers one on top of
another. The z-direction is pointing out of the page. The natural choice of primitive vectors is
a; = af, ag = afj, and ag = a2.

(i) Find the Miller indices for the planes in cases (b)-(e) on the attached page. [Remark: Im-
portant to convince yourself that the Miller indices actually define an infinite set of parallel
planes AND that the planes contain all the lattice points (no points are left out).]

(ii) Starting with the formula for the separation between adjacent planes (see class notes) which
is valid for any lattice type, find the separation for the sets of crystal planes in cases (b)-(e)
shown on the attached page.

1.5 (See Sample Question SQ3)

Find the Miller indices for the following lattice planes: The plane containing the points 3a;, 2a3, and
1(a; +ap + ag), in ANY lattice.

1.6 (Structure of Graphene) The attached page shows where the carbon atoms in graphene (which is a single
sheet of graphite) sit. The atoms labelled A and B are both carbon atoms. The labels emphasize that
the local environment of A and B atoms are different. Therefore, we need to (i) identify the underlying
2D lattice; and (ii) decorating each lattice point with a basis of two carbon atoms and specifying their
positions relative to a lattice point. The carbon-carbon separation is 1.42A. Describe the crystal
structure of graphene completely.

The graphene structure results from covalent bonding between carbon atoms. In chemistry language,
each atom undergoes sp? hybridization. With what you know about carbon atoms (6 electrons per
atom) and sp® hybridization, describe clearly why there is such a crystal structure and where the
electrons are. In particular, discuss what happens to the electron in a carbon atom that is not involved
in forming the honeycomb structure of graphene.

SAMPLE QUESTIONS FOR DISCUSSION IN WEEK 2 (23 Jan 2013) EXERCISE CLASS
You may want to think about them before attending exercise class and discuss them with the TA.

SQ1 (Related to Question 1.2.) Identify the following Bravais lattice in 3D given the following primitive
lattice vectors. Evaluate the volume of the primitive cell and find the volume of the conventional unit
cell (if there exists one).

a; = a(—% + 2),
as = a(—% +7),
ag = %(—-5\(4—3} + 2)1
SQ2 (Related to Question 1.4.) TA will illustrate how to do Problem 1.4 part (a) and part (b) for the planes

in case (a) in the figure. [You are asked to do cases (b)-(e).]

SQ3 (Related to Question 1.5.) Find the Miller indices for the following lattice planes: The pléme that is
parallel to both a; and ag, in ANY lattice.
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Important: You must attach a signed copy of the following declaration to your homework. You may also
download the form in the website listed below.

I declare that the assignment here submitted is original except for source material explicitly acknowl-
edged, and that the same or related material has not been previously submitted for another course. I also
acknowledge that I am aware of University policy and regulations on honesty in academic work, and of the
disciplinary guidelines and procedures applicable to breaches of such policy and regulations, as contained in
the website http//www.cuhk.edu.hk/policy/academichonesty.

Signature ' Date

Name . Student ID
PHYS4450 Solid State Physics

Problem Set Number



